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SARS‑CoV2 is a previously uncharacterized coronavirus and causative agent of the COVID‑19 
pandemic. The host response to SARS‑CoV2 has not yet been fully delineated, hampering a precise 
approach to therapy. To address this, we carried out a comprehensive analysis of gene expression 
data from the blood, lung, and airway of COVID‑19 patients. Our results indicate that COVID‑19 
pathogenesis is driven by populations of myeloid‑lineage cells with highly inflammatory but distinct 
transcriptional signatures in each compartment. The relative absence of cytotoxic cells in the lung 
suggests a model in which delayed clearance of the virus may permit exaggerated myeloid cell 
activation that contributes to disease pathogenesis by the production of inflammatory mediators. 
The gene expression profiles also identify potential therapeutic targets that could be modified with 
available drugs. The data suggest that transcriptomic profiling can provide an understanding of the 
pathogenesis of COVID‑19 in individual patients.

Coronaviruses (CoV) are a group of enveloped, single, positive-stranded RNA viruses causing mild to severe 
respiratory illnesses in  humans1–3. In the past two decades, three worldwide outbreaks have originated from 
CoVs capable of infecting the lower respiratory tract, resulting in heightened pathogenicity and high mortality 
rates. We are currently in the midst of a pandemic stemming from a third CoV strain, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV2), the causative agent of coronavirus disease 2019 (COVID-19). In the 
majority of cases, patients exhibit mild symptoms, whereas in more severe cases, patients may develop severe 
lung injury and death from respiratory  failure4, 5.

At this time, there is still incomplete information available regarding the host response to SARS-CoV2 infec-
tion and the perturbations resulting in a severe outcome. Despite this, clues can be derived from our knowledge 
of the immune response to infection by other respiratory viruses, including other CoVs. After infection, viruses 
are typically detected by pattern recognition receptors (PRRs) such as the inflammasome sensor NLRP3, which 
signal the release of interferons (IFNs) and inflammatory cytokines including the IL-1 family, IL-6, and TNF, that 
activate a local and systemic response to  infection6, 7. This involves the recruitment, activation, and differentia-
tion of innate and adaptive immune cells, including neutrophils, inflammatory myeloid cells, CD8 T cells, and 
natural killer (NK)  cells8. Resolution of infection is largely dependent on the cytotoxic activity of CD8 T cells 
and NK cells, which enable clearance of virus-infected  cells8. Failure to clear virus-infected cells may facilitate 
a hyper-inflammatory state termed Macrophage (MΦ) activation syndrome (MAS) or “cytokine storm”, and 
ultimately damage to the infected  lung9, 10.

The recent emergence of SARS-CoV2 and the relative lack of comprehensive knowledge regarding the pro-
gression of COVID-19 disease has constrained our ability to develop effective treatments for infected patients. 
One means to obtain a more complete understanding of the host response to SARS-CoV2 is to examine gene 
expression in relevant tissues. A limited number of gene expression profiles are available from patients with 
COVID-19 and have yielded some insights into the pathogenic processes triggered by infection with SARS-
CoV211–13. However, because of the small number of samples and limited analysis, a full picture of the biological 
state of SARS-CoV2-affected tissues has not emerged. To address this, we have assessed available SARS-CoV2 
gene expression datasets from blood, lung, and airway using a number of orthogonal bioinformatic tools to 
provide a more complete view of the nature of the COVID-19 inflammatory response and the potential points 
of therapeutic intervention.
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Results
Gene expression analysis of blood, lung, and airway of COVID‑19 patients. To characterize the 
pathologic response to SARS-CoV2 infection, we analyzed transcriptomic data from peripheral blood mono-
nuclear cells (PBMCs) and postmortem lung tissue of COVID-19 patients and healthy controls as well as bron-
choalveolar lavage (BAL) fluid of COVID-19 patients (CRA002390, GSE147507, Supplementary Fig. 1)11, 12. We 
first determined changes in gene expression in the blood (PBMC-CTL vs PBMC-CoV2) and lung (Lung-CTL 
vs Lung-CoV2). Because no control BAL fluids were associated with the BAL-CoV2 samples, we compared 
BAL-CoV2 to PBMC-CoV2 from the same dataset to avoid effects related to batch and methodology. Overall, 
we found 4245 differentially expressed genes (DEGs) in the blood (2166 up and 2079 down), 2220 DEGs in the 
lung (684 up and 1536 down), and 8952 DEGs in the airway (BAL) (4052 up and 4900 down) (Supplementary 
Table 2).

Conserved and differential enrichment of inflammatory cells and pathways in COVID‑19 
patients. To interrogate pathologic pathways in the 3 compartments, we carried out Gene Set Variation 
Analysis (GSVA) utilizing a number of informative gene  modules15, 16 (Fig. 1, Supplementary Table 3). Numer-
ous innate immune response pathways were increased in all 3 compartments, whereas adaptive immune signa-
tures tended to be decreased in blood and airway, but not lung, a pattern that is consistent with earlier  studies11, 

12, 17. Although heterogeneity was observed in all compartments, closer examination revealed consistent pertur-
bations. In the blood, the classical and lectin-induced complement pathways, as well as the NLRP3 inflamma-
some, plasma cells (PCs), and monocytes (Mo) were significantly enriched in COVID-19 patients, whereas cyto-
toxic cells and neutrophils were decreased. In the lung, the NLRP3 inflammasome, Mo and myeloid cells were 
enriched in COVID-19 patients. In addition, although the general granulocyte signature was not significantly 
increased, a specific low-density granulocyte (LDG)  signature18 and gene sets of inflammatory and suppressive 
neutrophils previously derived from COVID-19 blood were enriched in the  lung19, 20. In the airway, the classical 
and alternative complement pathways were enriched and T cells and cytotoxic cells were decreased.

Although there is conflicting data on the presence of an IFN gene signature (IGS) and whether SARS-CoV2 
infection induces a robust IFN  response12, 13, 21, we observed increased expression of Type I IFN genes (IFNA4, 
IFNA6, IFNA10) and significant enrichment of the common Type I and Type II IGS, including enrichment of 
IFNA2, IFNB1 and IFNG gene signatures specifically in the lung tissue (Fig. 2a,b). Furthermore, we detected 
increased expression of genes found to be important for the anti-viral innate immune response (IFIH1, DDX58, 
EIF2AK2, OAS2) and decreased expression of negative regulators of this response (IRF2BP1, SKIV2L) in both 
the lung and airway compartments (Fig. 2c)22. Interestingly, we found expression of MAVS, a signaling adaptor 
for RNA virus sensors, was decreased in the airway, which is consistent with the reported effect of SARS-CoV2 
and may reflect a mechanism of viral immune  evasion23, 24.

Increased expression of inflammatory mediators in the lungs of COVID‑19 patients. To exam-
ine the nature of the inflammatory response in the tissue compartments in greater detail, we examined spe-
cific DEGs of interest (Fig. 3a,b). In the blood, we noted increased expression of the inflammatory chemokine 
CXCL10, which is an IFNG response gene and involved in the activation and chemotaxis of peripheral immune 
 cells25, the chemokine receptor CCR2, which has been shown to be critical for immune cell recruitment in 
response to respiratory viral  infection26, as well as the inflammatory IL-1 family member, IL18. Expression of 
a number of chemokines, including ligands for CCR2, were significantly increased in both the lung tissue and 
airway of COVID-19 patients, including CCL2, CCL3L1, CCL7, CCL8, and CXCL10. We also observed elevated 
pro-inflammatory IL-1 family members, IL1A and IL1B, in these 2 compartments. Furthermore, lung tissue 
exhibited enrichment of the IL-1 cytokine gene signature, whereas the airway exhibited additional expression of 
IL18, IL33, IL36B, and IL36G.

Non‑hematopoietic cells in the BAL fluid may be indicative of viral‑induced damage. To 
determine whether viral infection resulted in modification of resident tissue populations, we employed GSVA 
with various non-hematopoietic cell gene signatures (Fig. 3c). We found that signatures of various lung tissue 
cells but not endothelial cells were enriched in the airway, but not the lung of COVID-19 subjects. Additionally, 
we also detected increased expression of the viral entry genes ACE2 and TMPRSS2, which are typically expressed 
on lung  epithelium27 (Fig. 3d).

Protein–protein interactions identify myeloid subsets in COVID‑19 patients. We next sought 
to utilize an unbiased, protein–protein interaction (PPI)-based clustering approach to assess the inflammatory 
cell types within each tissue compartment. PPI networks predicted from DEGs were simplified into metastruc-
tures defined by the number of genes in each cluster, the number of significant intra-cluster connections, and 
the number of associations connecting members of different clusters to each other (Fig. 4a-c, Supplementary 
Table 4). Overall, upregulated PPI networks identified numerous specific cell types and functions. In the blood, 
cluster 8 was dominated by a Mo population expressing C2, C5, CXCL10, CCR2, and multiple IFN-stimulated 
genes, whereas cluster 3 contained hallmarks of alternatively activated (M2) MΦs and/or myeloid-derived sup-
pressor cells (MDSCs), including CD33, CD36, CD93, and ITGAM (Fig.  4a). Smaller immune clusters were 
indicative of functions, including inflammasome activation, damage-associated molecular pattern (DAMP) 
activity, the classical complement cascade and the response to Type II IFNs. Myeloid heterogeneity in the blood 
was also reflected by the presence of multiple metabolic pathways, such as enhanced oxidative phosphorylation 
(OXPHOS) in cluster 1 linked to M2-like MΦs in cluster 3 (mean interaction score of 0.875), and glycolysis in 
clusters 7 and 13 connected to activated Mo in cluster 8 (interaction scores of 0.86 and 0.82, respectively). Con-
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Figure 1.  Conserved and differential enrichment of immune cells and pathways in blood, lung, and airway of 
SARS-CoV2-infected patients. (a-d) Individual sample gene expression from the blood (a), lung (b), and airway 
(c) was analyzed by GSVA for enrichment of immune cell and inflammatory pathways. The corresponding 
heatmap was generated using the R Bioconductor package complexHeatmap (v2.5.6)14. Select enrichment 
scores are shown as violin plots in (d) generated using GraphPad Prism v8.4.2 (www. graph pad. com). *p < 0.05, 
**p < 0.01.

http://www.graphpad.com
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Figure 2.  Elevated IFN expression in the lung tissue of COVID-19 patients. (a) Normalized  log2 fold change RNA-seq 
expression values for IFN-associated genes from blood, lung, and airway of individual COVID-19 patients. The dotted 
line represents the expression of each gene in healthy individuals (for blood and lung) or PBMCs from COVID-19 
patients (airway). (b) Individual sample gene expression from the blood, lung, and airway was analyzed by GSVA for 
enrichment of IFN-related gene signatures. (c) Normalized  log2 fold change RNA-seq expression values for anti-viral 
genes as in (a). Generated using GraphPad Prism v8.4.2 (www. graph pad. com). # p < 0.2, ## p < 0.1, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001.

http://www.graphpad.com
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sistent with our GSVA results, blood exhibited profoundly decreased T cells determined by the downregulation 
of T cell activation markers CD28, LCK and ITK (Supplementary Fig. 1a).

In addition to the various Mo/myeloid populations, lung tissue was infiltrated by LDGs, granulocytes, T cells, 
and B cells. Metabolic function in the lung was varied, with Mo-enriched clusters (1 and 7) linked to glycolysis 
in cluster 18 (interaction scores of 0.74 and 0.87, respectively) potentially reflecting cellular activation, whereas 
OXPHOS was predominantly downregulated along with other nuclear processes (transcription and mRNA 

Figure 3.  Viral entry gene expression correlates with enhanced expression of inflammatory mediators in 
SARS-CoV2-infected lungs. (a,b) Normalized  log2 fold change RNA-seq expression values for chemokines and 
chemokine receptors (a) and IL-1 family members (b) from blood, lung, and airway of COVID-19 patients as 
in Fig. 2a. (c) Individual sample gene expression from the blood, lung, and airway was analyzed by GSVA for 
enrichment of various lung tissue cell categories. (d) Normalized  log2 fold change RNA-seq expression values for 
viral entry genes as in (a,b). Generated using GraphPad Prism v8.4.2 (www. graph pad. com). #p < 0.2, ##p < 0.1, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

http://www.graphpad.com
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processing) (Fig. 4b, Supplementary Fig. 1b). The airway was enriched in inflammatory Mo, mitochondrial 
function and transcription. Multifunctional cluster 4 was dominated by numerous chemokine and cytokine 
receptor-ligand pairs, whereas smaller immune clusters were enriched in classical complement activation, IFNG 
and IL-1 responses. (Fig. 4c). Consistent with tissue damage, we found numerous small clusters in the airway, 
reflecting the presence of non-hematopoietic cells, including those containing multiple intermediate filament 
keratin genes, cell–cell adhesion claudin genes and surfactant genes. Notably, non-hematopoietic cell signatures 
in the airway were similar in content to those derived from in vitro SARS-CoV-2-infected primary lung epithelial 
cell lines (NHBE)12 (Supplementary Fig. 1d).

Given the large number of clusters including Mo/myeloid/MΦ, we next examined these clusters in greater 
detail by altering the stringency of PPI clustering to further characterize unique myeloid lineage cells within each 
tissue compartment (Fig. 4d-f, Supplementary Table 4). Myeloid lineage-specific clusters were then compared 
to previously published gene signatures, including populations G1-G4 reported in BAL of COVID-19  patients29 
(Supplementary Fig. 2a). In the blood, we found gene modules representative of common myeloid function 
(chemotaxis, proteolysis, etc.), as well as two independent Mo/myeloid subpopulations (Fig. 4d). Cluster 6 con-
tained numerous markers highly reminiscent of classically activated blood Mo and exhibited significant overlap 
with the inflammatory G1 population, whereas cluster 1 was similar to IFN-activated MΦs, CX3CR1 + synovial 
lining MΦs (from arthritic mice) and alveolar MΦs (AM) (Supplementary Fig. 2a).

In the lung (Fig. 4e), clusters 2, 3 and 6 overlapped with the G1 inflammatory Mo population and expressed a 
number of chemotaxis genes. A second population characteristic of AMs was also evident in the lung, defined by 
CSF2RB, the receptor for GM-CSF, a cytokine that regulates AM  differentiation8, 30, 31. Further characterization 
of this population indicated significant expression of the coagulation system genes F5, FGG, FGL1, SERPINA 
and SERPINE2. Similarly, re-clustering of Mo/MΦs/myeloid clusters from the airway revealed a population 
with hallmarks of inflammatory/M1 MΦ (MARCO and multiple members of the complement cascade; cluster 
7), and a second population of AMs (Fig. 4f) demonstrating significant overlap with the G3 and G4 populations 
(Supplementary Fig. 2a)29.

Characterization of myeloid populations in COVID‑19 patients. The overlap between previously 
characterized BAL-defined gene signatures from COVID-19  patients29 and tissue-defined PPI clusters motivated 
us to evaluate these populations in greater detail by GSVA. Consistent with PPI clusters, the inflammatory-MΦ 
G1 population was increased in the blood (Supplementary Fig. 2b). The G1 and G1 & G2 populations were 
increased in the lung, consistent with the expression of IFN and pro-inflammatory cytokines (Supplementary 
Fig. 2c). In the airway, the G2, G3, and G4 populations were significantly enriched indicating the presence of 
both pro-inflammatory MΦs and AMs (Supplementary Fig. 2d-f). As a whole, we found that gene signatures of 
previously defined Mo/MΦ populations in COVID-19 BAL were dispersed among the blood, lung, and airway 
compartments.

Co‑expression further delineates Mo/MΦ gene expression profiles of COVID‑19 patients. We 
next sought to identify the biology of the populations of Mo/MΦ in the tissue compartments in greater detail. 
We derived a set of 196 co-expressed Mo/myeloid genes and used them (Supplementary Fig. 3, Supplementary 
Table 5, see Methods) to probe heterogeneity in each tissue compartment (Fig. 5a). Notably, we found co-expres-
sion of 40 core genes between all compartments, which included complement, chemokine, and cytokine genes 
(Fig. 5b). In addition, there were 86 shared co-expressed genes in lung and blood, 57 in the lung and airway, 
and 61 in the airway and blood (Fig. 5b). To directly compare levels of these 196 co-expressed myeloid genes in 
each compartment, we normalized gene expression in each sample using 3 genes included in the core 40 genes, 
(FCGR1A, FCGR2A, FCGR2C) (Fig. 5c). Although many genes were not significantly different between com-
partments, numerous chemokines and cell surface markers (CCL2, CCL7, CCL8, CXCL10, CLEC4E, FCER1G) 
and inflammatory cytokines (IL1A and TNF) were enriched in the lung compared to the blood and airway. Fur-
thermore, the complement genes C1QB, C1QC, and C2 were increased in the lung compared to the blood, but 
not changed between the lung and the airway. Altogether, these normalized gene expression results suggested 
that expression of inflammatory mediators was increased in SARS-CoV2-infected lung over the other compart-
ments and in the airway compared to the blood.

To determine the function and nature of these myeloid populations, we compared them to previously pub-
lished myeloid signatures (Fig. 5d, Supplementary Table 6)29, 35–38. The population increased in the blood (A1) 
was predominantly characterized by features of AMs, M1 and M2 MΦs, pro-inflammatory MΦs with potential to 
infiltrate tissue, and the inflammatory MΦ G1 population. The A1 population also exhibited features of inflamed 
murine residential, interstitial MΦs. The myeloid cell population increased in COVID lung (A2) was most similar 

Figure 4.  PPI analysis identifies different myeloid cell subsets and metabolic pathways in blood, lung, and 
airway of COVID-19 patients. DE upregulated genes from blood (a), lung (b) and airway (c) were used to create 
PPI metaclusters using Cytoscape (v3.6.1) and the clusterMaker2 (v1.2.1)  plugin28. Size indicates the number 
of genes per cluster, color indicates the number of intra-cluster connections and edge weight indicates the 
number of inter-cluster connections. Enrichment for biological function and immune cell type was determined 
by BIG-C and I-Scope, respectively. Small clusters (~ 14 genes) with similar function are grouped in dotted-line 
boxes. Clusters enriched in Mo/myeloid genes were combined by decreasing cluster stringency to create a new 
set of myeloid-derived metastructures from the blood (d), lung (e) and airway (f). Interaction scores showing 
the strength of interaction between clusters are indicated (0.4–0.6, medium interaction; 0.61–0.8, strong 
interaction; 0.81–0.99, very strong interaction).

◂
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Figure 5.  Different co-expression-derived myeloid populations are found in blood, lung, and airway of 
COVID-19 patients. (a) GSVA enrichment of myeloid subpopulations increased in COVID-19 blood (A1), 
lung (A2), and airway (A3). (b) Venn Diagram of the gene overlap between myeloid subpopulations A1–A3. (c) 
Comparison of normalized  log2 fold change expression values of genes defining A1–A3. Expression values for 
each sample in each comparison were normalized by the mean of the  log2 fold change expression of FCGR1A, 
FCGR2A, and FCGR2C. Significant comparisons are displayed by Hedge’s G effect size. (d,e) Characterization of 
A1–A3 by enrichment of previously described myeloid populations (d) (Supplementary Table 3,6) and PBMC, 
lung, and BAL myeloid metaclusters from Fig. 4d-f (e). Fisher’s Exact Test was used to calculate overlap between 
transcriptomic signatures and significant overlaps (p < 0.05) are shown as the negative logarithm of the p value. 
(f) Trajectory analysis using expression of 621 genes (196 myeloid-specific genes used in a,b + 425 additional 
myeloid genes shown in Supplementary Table 5) in the blood, lung, and airway compartments. Colors represent 
sample identity and size represents pseudotime distance along the trajectory. Generated using GraphPad Prism 
v8.4.2 (www. graph pad. com) and the R package Monocle v2.14.032–34.

http://www.graphpad.com
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to pro-fibrotic AMs, M1 MΦs, M2 MΦs, blood-derived infiltrating MΦs, and the inflammatory Mo G1 popula-
tion. A2 was also marked by additional AM-specific genes, contributing to the observed overlap with the other 
two compartments. However, overlap between A2 and the G4 AM signature was relatively decreased, suggesting 
that the lung AMs are more similar to those found in pulmonary  fibrosis35. Finally, the population increased in 
the airway (A3) similarly exhibited characteristics of AMs, M1 and M2 MΦs, and pro-inflammatory MΦs that 
have infiltrated into the tissue compartment (Fig. 5d). Of note, the airway A3 population was not similar to the 
previously described BAL-derived inflammatory MΦ G1  population29.

We also evaluated the overlap between the Mo/MΦ A1–A3 gene clusters and those identified using PPI clus-
tering (Fig. 4) (Fig. 5e, Supplementary Table 6). Interestingly, the  CD33+ pathogenic population (PPI-derived 
PBMC Myeloid Cluster 1) was most strongly enriched in the blood, but was also increased in the other compart-
ments. All compartments were characterized by strong enrichment of pro-inflammatory Mo (PBMC Myeloid 
Cluster 6, Lung Myeloid Clusters 3 and 6, and BAL Myeloid Cluster 7), although A3 exhibited some differences 
in these populations compared to A1 and A2. Additionally, this comparison suggested enrichment of AMs in 
all three compartments; however, upon examination of the specific overlapping gene transcripts, the observed 
enrichment in blood A1 was primarily related to the presence of non-AM-specific myeloid genes. Finally, numer-
ous common activators and functions of PPI-derived clusters were enriched uniformly across A1, A2, and A3, 
providing further evidence for pro-inflammatory activity of myeloid cell populations in COVID-19 blood and 
tissue compartments.

We used trajectory analysis to understand potential transitions of Mo/MΦ in various tissue compartments. 
We based this on the normalized 196 myeloid-cell specific genes, as well as 425 additional normalized genes 
that could be important in Mo/myeloid/MΦ cell differentiation, reflective of chemotaxis, IFN, and metabolism 
genes (Supplementary Table 6). This analysis suggested a branch point of differentiation of Mo/MΦ between 
blood and lung, with some blood Mo/MΦ differentiating directly to airway cells and others to lung cells in a 
more protracted manner as indicated by pseudotime (Fig. 5f).

Analysis of the biologic activities of myeloid subpopulations. To focus on functional distinctions 
among the co-expressed myeloid populations in the blood, lung, and airway compartments (A1–A3), we utilized 
linear regression analyses between GSVA scores for A1–A3 and scores for metabolic, functional, and signaling 
pathways (Fig. 6, Supplementary Fig. 4, Supplementary Table 3). Blood A1 was significantly correlated with gly-
colysis, the NLRP3 inflammasome, and the classical and lectin-induced complement pathways. In lung A2, there 
were no significant correlations detected with metabolism, but this population was significantly correlated with 
the NLRP3 inflammasome and the alternative complement pathway. Finally, airway A3 was positively correlated 
with OXPHOS, the classical complement pathway, and TNF signaling and negatively correlated with apoptosis. 
Overall, these results delineated the heterogeneity in metabolic and inflammatory pathways among myeloid cells 
enriched in the blood, lung, and airway of COVID-19 patients.

Pathway and upstream regulator analysis inform tissue‑specific drug discovery for treatment 
of COVID‑19. To understand the biology of SARS-CoV2-infected patients in greater detail, we conducted 
pathway analysis on DEGs from the 3 compartments using IPA canonical signaling pathway and upstream regu-
lator (UPR) analysis functions (Fig. 7). In general, IFN signaling, the inflammasome, and other components of 
anti-viral, innate immunity were reflected by disease state gene expression profiles compared to healthy controls 
(Fig. 7a). In addition, metabolic pathways including OXPHOS and glycolysis were significantly increased in the 
blood of COVID-19 patients compared to controls.

UPRs predicted to drive the responses in each compartment indicated uniform involvement of inflammatory 
cytokines, with Type I IFN regulation dominant in the SARS-CoV2-infected lung (Fig. 7b). Notable UPRs of 
COVID-19 blood included IFNA, IFNG, multiple growth factors and ligands, HIF1A, CSF1 and CSF2. Evidence 
of inflammatory cytokine signaling by IL17 and IL36A was predicted in COVID-19 lung and airway compart-
ments. Whereas the airway DEG profile indicated regulation by both inflammatory and inhibitory cytokines, 
the COVID-19 lung UPRs were markedly inflammatory, including, NFκB, IL12, TNF, IL1B, and multiple Type 
I IFNs. These proinflammatory drivers were consistent in each individual lung which we analyzed separately 
because of the apparent heterogeneity between the lung samples (Supplementary Fig. 5).

IPA analysis was also employed to predict drugs that might interfere with COVID-19 inflammation (Fig. 7b, 
Supplementary Table 7). Of note, neutralizers of IL17, IL6, IL1, IFNA, IFNG, and TNF were predicted as antago-
nists of COVID-19 biology. Corticosteroids were predicted to revert the gene expression profile in the SARS-
CoV-2-infected lung, but were predicted as UPRs of COVID-19 blood, which may indicate that the patients 
from whom blood was collected had been treated with corticosteroids rather than indicating that these agents 
were driving disease pathology. Chloroquine (CQ) and hydroxychloroquine (HCQ) were additionally predicted 
to revert the COVID-19 transcription profile in the lung, which may point to their potential utility as treat-
ment options. A number of drugs matched to unique targetable pathways in the lung, including NFκB pathway 
inhibitors and neutralizers of the TNF family; however, some drugs also targeted pathways shared by both the 
lung and airway, including JAK inhibitors. In the BAL-CoV2 vs. PBMC-CoV2 IPA comparison, several drugs 
were matched to UPRs with a negative Z-score, which provided additional therapeutic options directed towards 
the blood of patients with COVID-19, given that molecules targeting downregulated or inhibited UPRs are 
molecules that could normalize the PBMC-CoV2 gene signature. As such, several possible therapeutics arose 
from this analysis to target COVID-19 blood, including ustekinumab, targeting the IL12/23 signaling pathway 
and lenalidomide, all of which has immunosuppressive effects. In addition, IGF1R inhibitors, EGFR inhibitors, 
VEGFR inhibitors, and AKT inhibitors were among the compounds predicted to target COVID-19 PBMCs. 
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Figure 6.  Analysis of biological activities of myeloid subpopulations. Linear regression between GSVA 
scores for each of the tissue-specific myeloid populations (A1–A3) and metabolism, NLRP3 Inflammasome, 
complement, apoptosis, and TNF signaling. Generated using GraphPad Prism v8.4.2 (www. graph pad. com).

http://www.graphpad.com
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No specific drugs were predicted to target all three tissue compartments, but each compartment was driven by 
inflammatory cytokines.

Another means to predict possible drug targets is by employing connectivity scoring with drug-related gene 
expression profiles using the perturbagen CMAP database within CLUE (Supplementary Table 7, see Meth-
ods). Although CLUE-predicted drugs tended to differ from those predicted by IPA or those matched to IPA-
predicted UPRs, there were some overlapping mechanisms, including inhibition of AKT, angiogenesis, CDK, 
EGFR, FLT3, HSP, JAK, and mTOR. IPA-predicted drugs that were unique from connectivity-predicted drugs 
tended to capture more cytokine and lymphocyte biology, including inhibitors of IL1, IL6, IL17, TNF, type I and 
II interferon, CD40LG, CD38, and CD19, among other cytokines and immune cell-specific markers. Overall, 
our gene expression-based analysis of SARS-CoV2-infected blood and tissue compartments indicated several 
existing treatment options that could be considered as candidates to treat COVID-19.

Discussion
Multiple orthogonal bioinformatics approaches were employed to analyze DEG profiles from the blood, lung, 
and airway of COVID-19 patients and revealed the dynamic nature of the inflammatory response to SARS-
CoV-2 and possible points of therapeutic intervention. In the blood, we saw evidence of myeloid cell activation, 
lymphopenia, and elevation of plasma cells, as has been shown by both standard cell counts, flow cytometry 
and gene expression  analysis39. In the lungs, we found increased gene signatures of additional myeloid cell types 
including granulocytes, infiltrating inflammatory Mo, and AMs as well as the presence of non-activated T, B, 
and NK cells. Furthermore, inflammation in the lung tissue was enhanced by the greater presence of IFNs and 
more pro-inflammatory cytokines than observed in the blood. Finally, in the airway we found evidence of blood 
and AM-derived inflammatory and regulatory MΦs, and non-hematopoietic lung tissue cells accompanied by 
expression of SARS-CoV-2 receptors, and alarmins, indicative of viral infection and damage to the lung and 
consistent with previous reports of detection of SARS-CoV2 in BAL  fluid11, 40. Together these findings suggest 
a systemic, but compartmentalized immune/inflammatory response with specific signs of cellular activation in 
blood, lung and airway. This has informed a more comprehensive and integrated model of the nature of the local 
and systemic host response to SARS-CoV2.

The predominant populations of immune cells we found to be enriched and activated in COVID-19 patients 
were myeloid cells and, in particular, subsets of inflammatory Mo and MΦs, which differed between the blood, 
lung, and airway compartments. In the peripheral blood, we found significant enrichment of MΦs, including 
classically activated inflammatory M1 MΦs as well as a  CD33+ myeloid subset, which appeared to be an M2 popu-
lation reminiscent of previously characterized IFN-activated MΦs, AMs, and MDSCs, indicative of a potential 
regulatory population induced by stimuli arising from the SARS-CoV2-infected lung. Myeloid cells enriched in 
the blood of COVID-19 patients were also highly correlated with gene signatures of metabolic pathways (Gly-
colysis, Pentose Phosphate Pathway, and TCA cycle) indicative of pro-inflammatory M1 MΦs41.

The lung tissue was enriched in gene signatures of Mo/MΦs as well as other myeloid cells including two popu-
lations of granulocytes, neutrophils and LDGs. Increases in blood neutrophils have been found to be associated 
with poor disease outcome in COVID-19 patients and it has been proposed that the formation of neutrophil 
extracellular traps (NETs) contributes to increased risk of death from SARS-CoV2  infection42–44. In addition, 
recent reports have characterized populations of dysregulated neutrophils expressing pro-inflammatory or sup-
pressive markers derived from scRNA-seq of COVID-19 patient PBMCs, which were positively correlated with 
disease  severity19, 20. We found that these populations were also increased in SARS-CoV2 infected lung tissue 
and, therefore, suggest that they may contribute to lung pathology. Although LDGs have not previously been 
reported in the COVID-19 lung, in comparison to neutrophils, they exhibit an enhanced capacity to produce 
Type I IFNs and form NETs and therefore, may have an even greater impact on disease  progression45.

Mo/MΦ subsets in the lung of COVID-19 patients were characterized as infiltrating inflammatory Mo and 
activated AMs, which exhibited a mixed metabolic status suggestive of different states of activation. Infiltrating 
Mo from the peripheral blood appeared to be further activated in the lung tissue as evidenced by enhanced 
expression of markers of highly inflammatory Mo previously characterized in severe COVID-19  cases29. The 
AM population enriched in COVID lung tissue clustered with genes involved in the coagulation system, which 
is consistent with observations of procoagulant AM activity in COVID-19 and in  ARDS46. As pulmonary throm-
bosis has been associated with poor clinical outcomes in COVID-19 patients, this result suggests that activated 
AMs in SARS-CoV2-infected lung tissue may be involved in facilitating a pro-thrombotic status, and thereby, 
contribute to poor disease  outcome47. Finally, although not statistically significant, we noted a trend toward an 
increase in platelets specifically in the COVID-19 lung, suggesting that they may also contribute to thrombosis 
in some patients.

In the airway, we detected gene signatures of various post-activated MΦ subsets including inflammatory M1 
MΦs, alternatively activated M2 MΦs, and activated AMs. Expression of myeloid cell genes in the airway also 
correlated with a signature of oxidative metabolism, which is characteristic of M2 macrophages and typically 
associated with control of tissue  damage41. However, in the context of pulmonary infection, polarization of AMs 
toward an anti-inflammatory M2 phenotype was found to promote continued inflammation, suggesting that 
these MΦs may not be effective at resolving anti-viral  immunity48.

In addition to myeloid cells, inflammatory mediators from the virally infected lung typically promote migra-
tion and activation of NK cells and adaptive immune cells including T and B  cells8. We found significant deficien-
cies in gene signatures of T cells and cytotoxic CD8 and NK cells, consistent with clinical evidence of lympho-
penia in the peripheral blood and airway of COVID-19  patients49–52. In contrast to T and NK cells, we observed 
increased evidence of B cell activation through CD40/CD40L and an increased plasma cell signature in the blood 
of COVID-19 patients. This result suggests that COVID-19 patients are able to mount an antibody-mediated 
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immune response. However, whether a virus-specific antibody response is beneficial to recovery from SARS-
CoV2 infection is  unclear53. Low quality, low affinity antibody responses to SARS-CoV have been found to pro-
mote lung injury in some patients, although it is unknown if this occurs in SARS-CoV2 infected  individuals54, 55.

The contents of the airway as assessed through the BAL fluid, act as a window into events in the alveoli 
and airways and can be used to understand what is happening in the infected tissue that is separate from the 
interstitium of the  lung56, 57. We found increased enrichment of lung epithelial cells in the airway of COVID-19 
patients, suggesting that SARS-CoV2 infection of alveolar cells together with localized inflammation as a result 
of enhanced myeloid cell infiltration promote significant damage to the alveoli and result in affected cells being 
sloughed into the airway. Furthermore, the lack of cytotoxic cells and thus, the inability to clear these virus-
infected lung epithelial cells in the airway likely accounts for the increased presence of post-activated MΦs and 
high expression of pro-inflammatory IL-1 family members we observed in the BAL of COVID-19 patients. 
Importantly, these results suggest that sampling of BAL may provide an important mechanism to evaluate the 
impact of SARS-CoV2 infection.

DEGs from COVID-19 patients were enriched in IGS, complement pathways, inflammatory cytokines and 
the inflammasome, which would be expected to activate Mo/MΦ populations in the blood, lung, and airway of 
COVID-19 patients and initiate a robust and systemic response to infection. In particular, our results support the 
conclusion that IL-1 family-mediated inflammation plays a critical role in COVID-19 pathogenesis. However, 
pro-inflammatory genes identified in a GWAS study as contributing to COVID-19 inflammation, including 
CCR2, CCR3, CXCR6, and MTA2B, were not significantly different from controls in our lung  dataset58. Thus, 
in contrast to previous characterizations of both SARS-CoV and SARS-CoV2 infection, our analysis did not 
indicate the presence of overwhelming pro-inflammatory cytokine production or “cytokine storm” in COVID-19 
 patients39, 59. Rather, our data suggests that the increased numbers, overactivation, and potentially heightened 
pathogenicity of monocyte/MΦ populations are the main drivers of the dysregulated inflammatory response 
and resulting tissue damage in COVID-19 patients.

In the absence of proven antiviral treatment and/or a SARS-CoV2-specific vaccine, disease management is 
reliant upon supportive care and therapeutics capable of limiting the severity of clinical manifestations. Using 
empiric evidence as a guide, the current approach has been successful in identifying “actionable” points of inter-
vention in an unbiased manner and in spite of formidable patient heterogeneity. Analyses presented here support 
several recent reports highlighting COVID-19 infection-related increases in inflammatory cytokines, particularly 
IL6 and TNF, both of which function as predictors of poor  prognosis60, 61, as well as complement  activation42, 62, 63. 
Accordingly, anti-IL6 therapies including sarilumab, tocilizumab and clazakizumab, as well as biologics targeting 
terminal components of the complement cascade, such as eculizumab and ravulizumab, are in various clini-
cal trial phases for treating COVID-19-associated pneumonia. Candidate TNF blockers such as adalimumab, 
etanercept and many others, represent additional options for inhibiting deleterious pro-inflammatory signaling. 
However, most showed patient heterogeneity, suggesting a requirement to identify the specific cytokine profile 
in each patient in order to offer personalized treatment. Our analyses also point to the likely involvement of 
pro-inflammatory IL1 family members especially in the lung, suggesting anti-IL1 family interventions, including 
canakinumab and anakinra, may be effective in preventing acute lung injury.

This analysis also establishes the predominance of inflammatory Mo/myeloid lineage cells in driving disease 
pathology and suggests therapies effective at blocking myeloid cell recruitment or forcing repolarization may 
prevent disease progression. CCL5 (RANTES) is a potent leukocyte chemoattractant that interacts with multiple 
receptors, including CCR1 (upregulated in the blood, lung and airway), and CCR5 (upregulated in the airway). 
Disruption of the CCR5-CCL5 axis was recently tested using the CCR5 neutralizing monoclonal antibody 
leronlimab in a small compassionate use trial with promising preliminary  results64.

It has also been observed that COVID-19 may predispose patients to thromboembolic  disease65, 66. Indeed, the 
gene expression analyses presented here showing altered expression of coagulation factors and fibrinogen genes 
suggests dysfunction within the intrinsic clotting pathway. These findings, together with evidence of excessive 
inflammation, complement activation and the involvement of LDGs in lung inflammation, may contribute to the 
systemic coagulation underlying the remarkably high incidence of thrombotic complications observed in severely 
ill patients, thereby reinforcing recommendations to apply pharmacological anti-thrombotic medications.

Finally, there has been much recent discussion concerning the use of anti-rheumatic drugs for managing 
COVID-19. In fact, CQ was one compound predicted as a UPR with potential phenotype-reversing properties. 
In vitro experiments examining the anti-viral properties of CQ and its derivative HCQ were effective in limit-
ing viral load; however, the efficacy of these drugs in clinical trials has been less  clear67. Questions about drug 
timing, dosage and adverse events have all called into question the use of these drugs for COVID-19 patients. 
Despite a recent report showing no negative connectivity between the gene signatures of SARS-CoV2 infection 
and HCQ  treatment40, IPA predicted a role of anti-malarials as limiting the function of intracellular TLRs in 
the lung and also as a direct negative UPR of gene expression abnormalities in the lung, suggesting a role in 
controlling COVID-19 inflammation and not viral replication. Further clinical testing may be necessary to test 
this possible utility.

By comparing the transcriptomic profile of the blood, lung, and airway in COVID-19 patients, a model of 
the systemic pathogenic response to SARS-CoV2 infection has emerged (Fig. 8). SARS-CoV2 infection leads 
to systemic Mo/MΦ activation, likely as a result of the release of pro-inflammatory mediators from infected 
cells. Infiltration of immune cells into the lung tissue and alveolus, in particular, neutrophils, LDGs, and patho-
genic Mo/MΦ populations promotes a cycle of inflammatory mediator release and further myeloid cell activa-
tion, which exacerbates inflammation in the lung and leads to tissue damage. The local release of complement 
components and clotting factors by infiltrating Mo/MΦ may contribute to both inflammation and thrombotic 
events. As disease progresses, increased infiltration of pro-inflammatory immune cells, release of inflammatory 
mediators, and damage to the infected alveolus is reflected by the presence of Mo/MΦ cells and lung epithelial 
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Figure 7.  Pathway Analysis of SARS-CoV-2 blood, lung, and airway. DEGs from each SARS-CoV-2 blood 
or tissue pairwise comparison were uploaded into IPA (Qiagen Inc., https:// www. qiage nbioi nform atics. com/ 
produ cts/ ingen uity- pathw ay- analy sis) and canonical signaling pathway (a) and upstream regulator (b) analyses 
were performed. Heatmaps represent significant results by Activation Z-Score ≥ |2| and overlap p-value < 0.01. 
The boxes with the dotted outline separate drugs that were predicted as upstream regulators from pathway 
molecules and complexes. The remaining, significant upstream regulators were matched with drugs with known 
antagonistic targeting mechanisms. The top 150 UPRs in the lung are shown in (b) and the remaining are in 
Supplementary Fig. 5. Specific drugs for particular drug families (e.g., Anti-IL17) are found in Supplementary 
Table 7. †: FDA-approved. ‡: Drug in development/clinical trials. P: Preclinical.

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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cells in the  airway56. Furthermore, evidence of both Mo-derived inflammatory MΦs and AMs in the airway 
compartment suggests that myeloid cell populations from both the blood and the lung tissue are present in the 
BAL. The accumulation of virus-infected cells and release of alarmins in the airway may not only reflect ongoing 
infection, but also promote inflammation and prevent resolution of the infection and foster the continuation 
of the innate immune response. Therefore, sampling the BAL fluid seems to be an effective strategy to monitor 
tissue inflammation and damage in COVID-19 patients.

As SARS-CoV2 continues to propagate, viral clearance is impaired by a lack of cytotoxic CD8 T cells and NK 
cells. This is consistent with MAS occurring in other settings, in which defects in cytotoxic activity of CD8 T cells 
and NK cells result in enhanced innate immune cell activation and intensified production of pro-inflammatory 
cytokines, many of which were also expressed in COVID-19  patients9, 10. Thus, we propose that the lack of acti-
vated CD8 T cells and NK cells and subsequent failure to clear virus-infected cells, is a major contributor to the 
MΦ-driven pathologic response to SARS-CoV2 observed in COVID-19 patients.

Figure 8.  Graphical model of COVID-19 pathogenesis. Proposed model of the inflammatory response 
to SARS-CoV2 infection in three compartments: the blood, lung, and airway generated using Microsoft 
PowerPoint version 19.0 and Adobe Illustrator version 25.0.
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In order to develop a model of SARS-CoV2 infection, we have utilized multiple orthogonal approaches to 
analyze gene expression from COVID-19 patients, but also acknowledge the limitations of this data. For example, 
we were only able to analyze 2–3 samples per experimental condition and this limited the statistical power of 
each of our bioinformatics techniques. In addition, the low number of samples meant that heterogeneity among 
patients in any given cohort had an increased impact on the overall outcome. One possible reason for this intra-
cohort heterogeneity is that the patients may have exhibited varying levels of disease severity and, unfortunately, 
we did not have access to clinical information. These points highlight the need for additional studies on more 
patients, preferably accounting for differences in demographic information and disease status, in order to increase 
the power of downstream analyses.

In conclusion, transcriptomic analysis has contributed critical insights into the pathogenesis of COVID-19. 
Diffuse Mo/MΦ activation is the likely primary driver of clinical pathology. Therefore, this work provides a 
rationale for placing greater focus on the detrimental effects of exaggerated activation of pathogenic Mo/MΦs 
and for targeting these populations as an effective treatment strategy for COVID-19 patients.

Methods
Ethics statement. Publicly available data sets used in this study are listed in Supplementary Table 1. For 
each dataset, all patient samples were collected in adherence to local regulations and after obtaining institu-
tional review board approved informed consent. The study corresponding to accession number CRA002309 was 
approved by the Ethics Committee of the Zhongnan Hospital of Wuhan University. The study corresponding to 
accession number GSE147505 was approved by the institutional review board at the Icahn School of Medicine at 
Mount Sinai under protocol HS#12-00145.

Read quality, trimming, mapping and summarization. RNA-seq data were processed using a con-
sistent workflow using FASTQC, Trimmomatic, STAR, Sambamba, and featureCounts. As described below 
SRA files were downloaded and converted into FASTQ format using SRA toolkit. Read ends and adapters were 
trimmed with Trimmomatic (v0.38) using a sliding window, ilmnclip, and headcrop filters. Both datasets were 
head cropped at 6 bp and adapters were removed before read alignment. Reads were mapped to the human ref-
erence genome hg38 using STAR, and the .sam files were converted to sorted .bam files using Sambamba. Read 
counts were summarized using the featureCounts function of the Subread package (v1.61.)

The RNA-seq tools are all free, open source programs available at the following web addresses.
SRA toolkit—https:// github. com/ ncbi/ sra- tools
FastQC—https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/
Trimmomatic—http:// www. usade llab. org/ cms/? page= trimm omatic
STAR—https:// github. com/ alexd obin/ STAR
http:// labsh are. cshl. edu/ shares/ ginge raslab/ www- data/ dobin/ STAR/ STAR. posix/ doc/ STARm anual. pdf
Sambamba—http:// lomer eiter. github. io/ samba mba/
FeatureCounts—http:// subre ad. sourc eforge. net/

Differential gene expression and gene set enrichment analysis. The DESeq2 workflow was used 
for differential expression analysis. Comparisons were made between control PBMCs and PBMCs from COVID-
19 patients (PBMC-CTL vs PBMC-CoV2) and control lung tissue and lung tissue from COVID-19 patients 
(Lung-CTL vs Lung-CoV2). Since no corresponding control BAL samples were available for the COVID-19 
BAL samples, we compared BAL samples from COVID-19 patients to COVID-19 PBMC (PBMC-CoV2 vs BAL-
CoV2). This was possible because these samples were analyzed on the same platform, run at the same time, and 
it was done understanding the limitations of this analysis. We also compared normal BAL to BAL of asthmatic 
individuals to identify genes unrelated to COVID-19 (PRJNA434133).

Two technical replicates were included for BAL cohort, and 4 technical replicates were included for postmor-
tem lung samples. The replicates were collapsed and averaged into one using collapsereplicates function from 
DESeq2 package. The genes with low expression (i.e. genes with very few reads) were removed by filtration. The 
filtered raw counts were normalized using the DESeq method and differentially expressed genes were determined 
by FDR < 0.268. Counts were then log2 transformed and used for downstream analyses (Supplementary Table 2).

Gene set variation analysis (GSVA). The  GSVA69 (V1.25.0) software package is an open source package 
available from R/Bioconductor and was used as a non-parametric, unsupervised method for estimating the vari-
ation of pre-defined gene sets in patient and control samples of microarray and RNA-seq expression data sets 
(www. bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ GSVA. html). The inputs for the GSVA algorithm were a 
gene expression matrix of  log2 expression values for pre-defined gene sets (Supplementary Table 3). All genes 
within a gene set were evaluated if the interquartile range (IQR) of their expression across the samples was 
greater than 0. Enrichment scores (GSVA scores) were calculated non-parametrically using a Kolmogorov 
Smirnoff (KS)-like random walk statistic and a negative value for a particular sample and gene set, indicating 
that the gene set has a lower expression than the same gene set with a positive value. The enrichment scores (ES) 
were the largest positive and negative random walk deviations from zero, respectively, for a particular sample 
and gene set. The positive and negative ES for a particular gene set depend on the expression levels of the genes 
that form the pre-defined gene set. GSVA calculates enrichment scores using the  log2 expression values for a 
group of genes in each SARS-CoV2 patient and healthy control and normalizes these scores between − 1 (no 
enrichment) and + 1 (enriched). Welch’s t test was used to calculate the significance of the gene sets between the 
cohorts. Significant enrichment of gene sets was determined by p value < 0.05.

https://github.com/ncbi/sra-tools
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/?page=trimmomatic
https://github.com/alexdobin/STAR
http://labshare.cshl.edu/shares/gingeraslab/www-data/dobin/STAR/STAR.posix/doc/STARmanual.pdf
http://lomereiter.github.io/sambamba/
http://subread.sourceforge.net/
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
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Derivation of GSVA gene sets. All input gene sets used for GSVA analysis can be found in Supplementary 
Table 3. Cellular and inflammatory modules and IFN-induced gene sets were previously  derived15, 16. Additional 
inflammatory pathways (NLRP3 Inflammasome, Classical Complement, Alternative Complement, and Lectin-
induced Complement were curated from the Molecular Signatures Database. Other signatures were derived 
from various  publications29, 35–38, 70.

Additional hematopoietic cellular gene signatures (monocyte, myeloid, and neutrophil) were derived from 
I-Scope, a tool developed to identify immune cell specific genes in big data gene expression analyses. Non-
hematopoietic fibroblast and lung cell gene sets were derived from T-Scope, a tool developed to identify genes 
specific for 45 non-hematopoietic cell types or tissues in big gene expression datasets. The T-Scope database 
contains 1,234 transcripts derived initially from 10,000 tissue enriched and 8,000 cell line enriched genes listed 
in the Human Protein Atlas. From the list of 18,000 potential tissue or cell specific genes, housekeeping genes and 
genes differentially expressed in 40 hematopoietic cell datasets were removed. The final gene lists were checked 
against available single cell analyses to confirm cellular specificity.

Nine single-cell RNA-seq lung cell populations (AT1, AT2, Ciliated, Club, Endothelial, Fibroblasts, Immuno 
Monocytes, Immuno T Cells, and Lymphatic Endothelium) were downloaded from the Eils Lung Tissues  set71 
accessed by the UC Santa Cruz Genome Browser (https:// eils- lung. cells. ucsc. edu). Genes occurring in more than 
one cell type were removed. Additionally, genes known to be expressed by immune cells were removed. The Eils 
Lung Tissues set Immuno Monocyte, Immuno T Cell, Fibroblast, and Lymphatic Endothelium categories were 
not employed in further analyses.

Apoptosis and NFkB gene signatures were derived and modified from Ingenuity Pathway Analysis path-
ways Apoptosis Signaling and NFkB Signaling. ROS-protection was derived from Biologically Informed Gene-
Clustering (BIG-C).

Network analysis and visualization. Visualization of protein–protein interaction and relationships 
between genes within datasets was done using Cytoscape (version 3.6.1) software (Supplementary Table  4). 
Briefly, STRING (version 1.3.2) generated networks were imported into Cytoscape (version 3.6.1) and parti-
tioned with MCODE via the clusterMaker2 (version 1.2.1) plugin. For PPIs in Fig. 4a-c, STRING settings were 
adjusted to high confidence (0.7), for PPIs in Fig. 4d-f, settings were relaxed to medium confidence (0.4). All 
PPIs were generated without the neighborhood or textmining features. For some PPIs, the average interaction 
strength using STRING-based cumulative interaction scores was used to determine the strength of interaction 
between clusters.

Functional and cellular enrichment analysis. Functional enrichment of clusters was performed using 
Biologically Informed Gene-Clustering (BIG-C), which was developed to understand the potential biological 
meaning of large lists of  genes72. Genes are clustered into 53 categories based on their most likely biological 
function and/or cellular localization based on information from multiple on-line tools and databases includ-
ing UniProtKB/Swiss-Prot, GO terms, KEGG Pathways, MGI database, NCBI PubMed, and the Interactome. 
Hematopoietic cellular enrichment was performed using I-Scope, a tool developed to identify immune cell spe-
cific genes in big data gene expression analyses. Statistically significant enriched types of cell types in DEGs are 
determined by Fisher’s Exact test overlap p value and then determining an Odds Ratio of enrichment.

Derivation of co‑expressed myeloid subpopulations in each compartment. Co-expression 
analyses were conducted in R. Sample (control and patient) log2 expression values for each gene of the 221 
identified monocyte/myeloid cell genes in were analyzed for their Pearson correlation coefficient in each tissue 
compartment (blood, lung, and airway) using the Cor function. Of note, only 196 of 221 genes had changes in 
gene expression in at least one tissue by RNA-seq. Pearson correlations for these 196 genes were hierarchically 
clustered by their Euclidian distance into 2 clusters (k = 2) using the heatmap.2 function in R. This resulted in 
2 Mo/myeloid co-expressed clusters in each compartment corresponding to increased and decreased gene sets. 
The upregulated co-expressed genes were used to define the A1, A2, and A3 myeloid subpopulations from the 
blood, lung, and airway compartments, respectively (Supplementary Table 5). The co-expressed myeloid popula-
tions in each compartment (A1–A3) were then evaluated for enrichment by GSVA.

Inter‑compartment myeloid gene comparisons. To compare relative expression of the 196 myeloid-
specific genes among compartments, HTS filtered log2 expression values for each gene were normalized to the 
average expression of FCGR1A, FCGR2A, and FCGR2C in each sample. Welch’s t-test was used to calculate 
the significant differences in normalized gene expression between cohorts. Effect sizes were computed between 
cohorts using the cohen.d function with Hedges’ correction in R.

Monocle. Trajectory analyses were performed with  Monocle32–34 version 2.14.0 in R. Gene expression values 
for 621 genes related to myeloid cell differentiation and function including cell surface and secreted markers, 
M1 and M2 markers, metabolism, and IFN genes were selected as a curated input list (Supplementary Table 5). 
The HTS filtered log2 expression values for each of these genes in each sample for each tissue type (PBMC-
CoV2, Lung-CoV2, and BAL-CoV2) was normalized by the average log2 expression of FCGR1A, FCGR2A, and 
FCGR2C in that particular sample as described above. Normalized expression of these genes was used as the 
input expression data for Monocle. The CellDataSet was created with parameters of lowerDetectionLimit = 0.01 
and expressionFamily = uninormal(). Dimensions were reduced using the DDRTree method, and the max_com-
ponents parameter was set to 2. Cell state was ordered based upon the state corresponding to PBMC-CoV2.

https://eils-lung.cells.ucsc.edu
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Linear regression analysis. Simple linear regression between calculated myeloid subpopulation A1, A2, 
and A3 GSVA scores and biological functions or signaling pathway GSVA scores was performed in GraphPad 
Prism Version 8.4.2. In all analyses where pathway genes (e.g. classical complement) were also myeloid cell 
genes, these genes were removed from the myeloid GSVA score for that comparison and kept in the pathway 
GSVA score. For each regression analysis, the Goodness of Fit is displayed as the R squared value and the p-value 
testing the significant of the slope is displayed. All p-values are displayed with 3 digits and rounded-up unless 
rounding changes significance.

Ingenuity pathway analysis. The canonical pathway and upstream regulator functions of IPA core 
expression analysis tool (Qiagen) were used to interrogate DEG lists. Canonical pathways and upstream regula-
tors were considered significant if |Activation Z-Score|≥ 2 and overlap p-value < 0.01. Chemical reagents, chemi-
cal toxicants, and endogenous non-mammalian ligands were culled from all upstream regulator analyses.

Drug‑target matching. IPA-predicted upstream regulators were annotated with respective targeting drugs 
and compounds to elucidate potential useful therapies in SARS-CoV2. Drugs targeting gene products of inter-
est by both direct and indirect targeting mechanisms were sourced by Combined Lupus Treatment Scoring 
(CoLTS)-scored  drugs73, the Connectivity Map via the drug repurposing tool, DrugBank, and literature mining. 
Similar methods were employed to determine information about drugs and compounds, including mechanism 
of action and stage of clinical development. The drug repurposing tool was accessed at clue.io/repurposing-app.

Analysis of COVID‑19 PBMC, lung, and BAL DEG profiles via CLUE. DEGs from PBMC-CoV2 vs. 
PBMC-CTL, Lung-CoV2 vs. Lung-CTL, and BAL-CoV2 vs. PBMC-CoV2 were used as input for the CMaP and 
LINCS Unified Environment (CLUE) cloud-based connectivity map analysis platform (https:// clue. io/ conne 
ctope dia/). Top upregulated and downregulated DEGs from each signature as determined by magnitude of  log2 
fold change were sequentially entered into CLUE until 150 of each were accepted for analysis to determine drugs, 
compounds, small molecules, and other perturbagens that mimic or oppose the uploaded COVID-19 gene 
expression signatures. Resultant drugs and compounds with negative connectivity scores in the [− 75, − 100] 
range were analyzed to include results with high confidence of antagonizing COVID-19 gene expression profiles.

Data availability
The datasets analyzed in this study are available from the China National Center for Bioinformation’s National 
Genomics Data Center, https:// bigd. big. ac. cn/ gsa/ browse/ CRA00 2390, and in the NCBI GEO repository https:// 
www. ncbi. nlm. nih. gov/ biopr oject/ PRJNA 615032. Additional data generated or analyzed during this study are 
included in this published article (and its Supplementary Information files).
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